Epidemic spreading with immunization and mutations.

نویسندگان

  • Stephan M Dammer
  • Haye Hinrichsen
چکیده

The spreading of infectious diseases with and without immunization of individuals can be modeled by stochastic processes that exhibit a transition between an active phase of epidemic spreading and an absorbing phase, where the disease dies out. In nature, however, the transmitted pathogen may also mutate, weakening the effect of immunization. In order to study the influence of mutations, we introduce a model that mimics epidemic spreading with immunization and mutations. The model exhibits a line of continuous phase transitions and includes the general epidemic process (GEP) and directed percolation (DP) as special cases. Restricting to perfect immunization in two spatial dimensions, we analyze the phase diagram and study the scaling behavior along the phase transition line as well as in the vicinity of the GEP point. We show that mutations lead generically to a crossover from the GEP to DP. Using standard scaling arguments, we also predict the form of the phase transition line close to the GEP point. The protection gained by immunization is vitally decreased by the occurrence of mutations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Competing spreading processes and immunization in multiplex networks

Epidemic spreading on physical contact network will naturally introduce the human awareness information diffusion on virtual contact network, and the awareness diffusion will in turn depress the epidemic spreading, thus forming the competing spreading processes of epidemic and awareness in a multiplex networks. In this paper, we study the competing dynamics of epidemic and awareness, both of wh...

متن کامل

Epidemic spreading with immunization rate on complex networks

We investigate the spread of diseases, computer viruses or information on complex networks and also immunization strategies to prevent or control the spread. When an entire population cannot be immunized and the effect of immunization is not perfect, we need the targeted immunization with immunization rate. Under such a circumstance we calculate epidemic thresholds for the SIR and SIS epidemic ...

متن کامل

Epidemic spreading with nonlinear infectivity in weighted scale-free networks

In this paper, we investigate the epidemic spreading for SIR model in weighted scale-free networks with nonlinear infectivity, where the transmission rate in our analytical model is weighted. Concretely, we introduce the infectivity exponent α and the weight exponent β into the analytical SIR model, then examine the combination effects of α and β on the epidemic threshold and phase transition. ...

متن کامل

Immunization and epidemic dynamics in complex networks

We study the behavior of epidemic spreading in networks, and, in particular, scale free networks. We use the Susceptible–Infected–Removed (SIR) epidemiological model. We give simulation results for the dynamics of epidemic spreading. By mapping the model into a static bond-percolation model we derive analytical results for the total number of infected individuals. We study this model with vario...

متن کامل

Control of Traffic Driven Epidemics in Weighted Networks by Immunizing Edges

Many immunization strategies have been proposed to control the epidemic spreading which mainly focus on how to immunize the nodes. A novel and efficient strategy to control the traffic driven epidemic spreading in weighted networks is proposed in this paper. By immunizing the edges according to different weights, our control strategies cannot only reduce the epidemic spreading velocity and enha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 68 1 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2003